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ABSTRACT

Aggression is an important component of behavior in many
animals and may be crucial to providing individuals with a com-
petitive advantage when resources are limited. Although much
is known about the effects of catecholamines and hormones on
aggression, relatively few studies have examined the effects of
physical performance on aggression. Here we use a large, sexually
dimorphic teiid lizard to test whether individuals that show high
levels of physical performance (bite force) are also more ag-
gressive toward a potential threat (i.e., a human approaching the
lizard). Our results show that independent of their sex, larger
individuals with higher bite forces were indeed more aggressive.
Moreover, our data show that individuals with higher bite forces
tend to show decreased escape responses and are slower, pro-
viding evidence for a trade-off between fight and flight abilities.
As bite force increased dramatically with body size, we suggest
that large body size and bite force may reduce the threshold for
an individual to engage in an aggressive encounter, allowing it
to potentially gain or maintain resources and fight off predators
while minimizing the risk of injury.

Introduction

Aggression is a fascinating phenomenon from a human per-
spective because aggression in society is considered to be a serious
social problem (Simpson 2001). However, aggression is crucial
for many organisms because more aggressive individuals are often
better competitors for limited resources such as food, shelter,
and mates. Moreover, aggression may be an important anti-
predator strategy that may increase the survival of an organism.
High levels of aggression, however, may also induce costs by
reducing growth rate and condition (e.g., Civantos 2002), by
increasing energy expenditure (Marler and Moore 1988), or by
increasing risk of physical injury (Lappin and Husak 2005).

Body size has been invoked as an important factor mediating
aggression, with larger individuals typically being more aggressive
and more dominant than smaller ones (Chani 1995; Goldsmith
et al. 1996; Nowbahari et al. 1999; Whiting et al. 2006; Hoyer
et al. 2008; but see Morell et al. 2005; Just et al. 2007). However,
one factor that has received little attention to date is the role of
physical performance in establishing differences in aggression
between individuals. Although several studies have demonstrated
that dominant males have higher levels of locomotor perfor-
mance than nondominant males (Robson and Miles 2000; Perry
et al. 2004; but see Lopez and Martin 2002), this may be related
to these individuals being better at patrolling or defending ter-
ritories rather than being associated with aggression per se. Re-
cently, an important role of bite force in determining the outcome
of aggressive interactions in lizards has been suggested (Lailvaux
et al. 2004; Huyghe et al 2005; Lappin and Husak 2005; Husak
et al. 2006). Moreover, in at least one species of lizard, high levels
of bite-force capacity were associated with some aspect of fitness
(number of offspring; Husak et al. 2009), suggesting that this
trait may be under direct selection.

These findings raise the question of whether strong individuals
(that are probably better fighters) are also more likely to fight
in general; that is, is physical performance related to levels of
aggression in general? Although this might be expected in a sex-
specific context, because circulating testosterone levels directly
affect aggression (Weiss and Moore 2004; Korzan et al. 2006;
Kabelik et al. 2008) and muscle mass (Bardin and Catterall 1981;
Joubert and Tobin 1995; Emerson 2000; Dorlöchter et al. 2004)
as well as performance traits such as bite force (Husak et al.
2007), there are indications that testosterone may not play a role
in predatory aggression (Simpson 2001). However, stronger in-
dividuals who are better fighters would be more likely to gain
from engaging in an aggressive interaction irrespective of the
context (i.e., during both predator-prey and intraspecific inter-
actions) because the costs of engaging in an aggressive encounter
are probably lower and the likelihood of winning a fight is higher.
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Figure 1. Scatterplots illustrating the results of a factor analysis per-
formed on behavioral data for males (A) and females (B). The first
factor is strongly correlated with the tendency for individuals to be
aggressive in a situation where there is no escape possible, and it
separates aggressive individuals from less aggressive ones for both males
and females. The second factor for males is correlated with the pro-
pensity of an individual to try to escape (low scores) and the time
needed to reach a shelter (high scores indicate that individuals took
more time). For females, the second axis is correlated with aggressive
behavior in an unfamiliar environment.

Here, we investigate correlations between bite-force capacity and
aggressive behavior for both sexes in a large, sexually dimorphic
teiid lizard, Tupinambis merianae. Earlier studies have shown that
male T. merianae will fight for access to territories and females,
female T. merianae will fight over nesting sites (Chani 1995), and
both sexes will fight over food resources (at least in captivity; D.
V. Andrade, personal observation) and stand their ground to
fight when confronted with predators (Von Ihering 1953, 2002;
Santos 1981; de Lema 1983; Haddad et al. 2008), making ag-
gression particularly relevant to study in this species.

Material and Methods

Animals and Husbandry

The animals were obtained from the Jacarezário at the Uni-
versidade Estadual Paulista (Rio Claro, São Paulo, in south-
eastern Brazil), which runs a conservation breeding program
for tegu lizards and other reptiles (Instituto Brasileiro do Meio
Ambiente e dos Recursos Naturais Renováveis reg. 1-35-94-
1088-8). At this laboratory, the lizards are kept in small groups
(5–10 individuals) in outdoor pens ( or5 m # 10 m 2 m # 2

) and are provided with water and ground shelters, as wellm
as shade and sunny areas for thermoregulation. In spring and
summer, the animals are fed three times a week with ground
beef, fruits, and/or 1-d-old chickens.

Behavioral Trials

To assess the behavioral responses of animals, a series of four
consecutive tests were conducted. Although the consecutive
nature of the testing protocol is likely to bias the responses of
the animals, we were primarily interested in comparing an iden-
tical treatment designed to elicit increased levels of aggression
across individuals. This allowed us to test whether performance
was associated with aggression at the individual level. All tests
were conducted on three consecutive days between 10:00 a.m.
and 6:00 p.m., when animals were fully active, by the same
person wearing the same clothes. Because behavioral responses
may be dependent on temperature (Hertz et al. 1982; Crowley
and Pietruszka 1983; Mautz et al. 1992; Herrel et al. 2007),
before testing, the temperatures of the lizards were measured
from a distance using an infrared thermometer. Mean surface
temperature of the lizards was . The first test36.8� � 3.44�C
involved walking slowly, but deliberately, toward the animal in
its home enclosure (familiar environment). While doing so,
another person recorded (1) the distance from the animal to
the observer at the first response of the animal, (2) the response
type, and (3) whether the animals arched their back or not (0
or 1). Arching is a typical defensive behavior in these lizards
that involves a pronounced arching of the back and a reorien-
tation of the lizard in a direction facing the potential threat.
Possible response types and scores were running away (1), walk-
ing away (2), ignoring (3), threatening (4), attacking and re-
treating (5), and attacking and holding ground for 10 s or more
(6). Thus, higher scores were associated with more aggressive
behaviors. For the second test, animals were caught, placed in

an unfamiliar environment (narrow corridor with a shelter con-
sisting of Philodendron selloum leaves at the end), and ap-
proached by the same person after 1 min. As in the first test,
the other person recorded the response type and whether an-
imals arched their back or not, and a third person recorded
the time before the animal retreated into the shelter. Next,
animals were captured again and placed in 100-cm # 50-cm
boxes with no shelter. After 1 min, the same person from the
previous test approached the lizard with his hand (wearing a
glove) and tried to touch the lizard. The other person recorded
the number of aggressive bouts (threats or threat displays), the
number of actual bites, and the number of escape bouts (animal
running away from the hand). For the final test, the animal
was captured and tapped gently on the side of the jaws while
a third person recorded the behavioral response. The possible
responses and scores were as follows: ignore or tongue flick
(1), open-mouth threat (2), attempt to bite (3), or successful
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Table 1: Factor loadings of a factor analysis performed on the behavioral scores for male
and female Tupinambis merianae

Parameter

Male Female

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Eigenvalues 2.84 1.82 1.35 2.60 1.79 1.62
Variance explained (%) 31.51 20.22 15.03 28.86 19.88 17.99
Response type familiar .578 .213 .464 .434 .693 .074
Arching familiar .156 �.257 .664 .511 .308 .500
Response type unfamiliar .728 .546 �.024 .137 .824 �.020
Arching unfamiliar �.032 .017 .797 .465 .325 .377
Time to shelter .029 .839 �.043 �.212 .547 �.564
No. aggressive behaviors .940 .000 .010 .962 .101 �.004
No. bites .909 �.027 �.041 .955 .120 �.010
No. sprints �.011 �.839 .100 �.158 �.300 .773
Response type tap test .485 �.053 .219 .062 .124 .552

Note. Bold indicates loadings 10.7. Factors are described in “Behavioral Analysis.”

bite (4). All these scores were entered in a spread sheet and
used as input for a factor analysis.

Bite Forces

In vivo bite forces were measured using an isometric Kistler
force transducer (9311B; range, �5.000 N; Kistler, Switzerland)
mounted on a purpose-built holder and connected to a Kistler
charge amplifier (5995A; Kistler, Switzerland; see Herrel et al.
1999; Anderson et al. 2008 for a more detailed description of
the setup). When the free end of the holder was placed between
the jaws of an animal, prolonged and repeated biting resulted.
The place of application of bite forces was standardized for all
animals. Gape angle was standardized by moving the bite plates
away from each other for larger animals. Measurements were
repeated five times for each animal, and the maximum value
obtained during such a recording session was considered to be
the maximal bite force for that individual.

Analyses

Data were analyzed separately for males and females, because
Tupinambis merianae is a strongly sexually dimorphic species
and so patterns could be expected to be different for males and
females. All behavioral scores were incorporated into a factor
analysis with varimax rotation to reduce the dimensionality of
the data set. Three factors were extracted, and factor scores
were saved and used as new variables. Factor scores were cor-
related to log10-transformed bite force and log10-transformed
snout-vent length (a proxy for body size) for males and females
separately to test for associations between behavioral and per-
formance traits. To test whether correlations between perfor-
mance and behavioral scores were mediated by body size, re-
sidual bite forces were calculated from the regression of
log10-transformed bite force on log10-transformed snout-vent
length and correlated with the behavioral factors.

Results

Behavioral Analysis

The results of our behavioral analyses indicate distinct differ-
ences between individuals in their responses to a potential
threat (Fig. 1). For males, the factor analysis retained three
axes, together accounting for 66.76% of the variation in the
data. The first factor, accounting for slightly over 30% of the
variation, was positively correlated with the number of bites
and the number of aggressive behaviors when placed in a con-
fined space with no shelter (Table 1). Thus, individuals with
high scores on this axis are generally aggressive. The second
factor, accounting for about 20% of the variation in the data,
was positively correlated with the time needed to reach a shelter
and negatively correlated with the number of sprints in the
confined space (Table 1). Thus, individuals scoring highly on
this axis did not show a great tendency to escape, even when
provided with the option of escape to a shelter. Finally, the
third factor, accounting for another 15% of the variation, was
positively associated with arching in an unfamiliar environment
(Table 1). Thus, animals scoring highly on this axis tended to
display this behavior.

For females, results were generally similar (Table 1; Fig. 1B).
Again, the first factor was highly and positively correlated with
the number of bites and the number of aggressive behaviors
when placed in a confined space with no shelter. The second
factor, however, differed from that for males and was positively
correlated with the response type in an unfamiliar environment.
Females scoring highly on this axis tended to show more ag-
gressive behaviors when placed in an unfamiliar environment.
The third factor was positively correlated with the number of
sprints in a confined space, and females scoring highly on this
axis showed a tendency to escape from aversive stimuli.

Interestingly, the responses of individuals in a familiar en-
vironment did not contribute strongly to the behavioral vari-
ation in the data set for both males and females, suggesting a
more similar response across individuals. However, individuals
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Table 2: Correlations between performance (bite force) and
behavior for male and female Tupinambis merianae

Sex, Parameter

Snout-
Vent
Length

Factor

1 2 3

Male (N p 50):
Bite force .966** .365* .424* .060
Snout-vent length … .365* .419* .063
Residual bite force … �.023 .076 �.01

Female (N p 70):
Bite force .975** .332* .231 �.412*
Snout-vent length … .365* .211 �.416*
Residual bite force … .046 .077 .006

Note. Entries are Pearson correlation coefficients. Factors are described in

“Behavioral Analysis.”

* .P p 0.05

** .P p 0.01

Figure 2. Scatterplot illustrating the relation between the tendency of
an animal to fight when unable to hide and bite force in Tupinambis
merianae. Although the relation is significant for both sexes, bite force
is a much better predictor of behavior in males (A) than females (B).
Dashed lines represent 95% confidence limits of the slope.

that were aggressive in both unfamiliar and confined spaces
also tended to show greater aggressive scores in a familiar en-
vironment (Table 1).

Bite Force and Behavior

Our data indicate that bite force is significantly correlated with
the behavioral factors retained from our behavioral analysis
(Table 2). In males, bite force was significantly correlated with
the first and second factors, indicating that animals with greater
bite force were more aggressive in a confined environment (Fig.
2A) and were more reluctant to escape from a negative stimulus
(Fig. 3A). For females, results were similar, and females with
higher bite forces were also more aggressive in a confined en-
vironment (Fig. 2B) and more reluctant to escape (Fig. 3B).
However, bite force was not correlated with the second axis in
males, indicating that males with higher bite forces did not
tend to display (i.e., arch) more often. Interestingly, in females,
bite force was not associated with response type in an unfamiliar
environment, even though this factor explained a considerable
amount of the behavioral variation among females (Table 2).

Both the first and second behavioral factors were also pos-
itively correlated with body size in males (Table 2), suggesting
that larger males were more aggressive, escaped less, and needed
more time to reach a shelter. In females, body size was cor-
related with the first and third behavioral factors (Table 2).
Thus, larger females were more aggressive and showed fewer
escape behaviors.

Discussion

Our results show that there is a significant positive correlation
between aggressive behavior and bite force and body size; large
individuals with high bite force were more aggressive and
showed fewer escape responses in an unfamiliar or restricted
environment. Surprisingly, the behavioral responses of some
individuals were different in different contexts. In their home
enclosure, animals were generally less aggressive, and individ-

uals with high bite forces did not show significantly more ag-
gressive behaviors. Individuals with high bite forces also did
not tend to escape when in their home enclosure, suggesting
that they were relatively unresponsive in general. However, the
sequential decrease of the space available to the lizards in con-
secutive tests clearly evoked aggressive responses. Although it
is unclear at this point why animals were generally reluctant
to show aggression in their home enclosures, this may be related
to the fact that lizards are used to humans because they are
fed regularly, and consequently, they may not consider humans
to be a severe potential threat when in a familiar environment.
In an unfamiliar or restricted environment, however, animals
with high bite forces were more inclined to show aggressive
behaviors and would generally stand their ground and attack
rather than run away from a potentially negative stimulus. Al-
though display behavior (i.e., arching) was the main variable
correlating with the third behavioral axis in males, this axis was
not correlated to bite-force capacity. The presence or absence
of arching during the behavioral responses of the lizards thus
does not reflect their ability to bite.

The negative correlation between bite-force capacity and the
number of sprints (i.e., escape bouts) observed in this study is
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Figure 3. Scatterplot illustrating the relation between behavior and bite
force in Tupinambis merianae. Males with higher bite forces take more
time to reach their shelter and show a decreased tendency to escape
(A). Females with higher bite forces also showed a decreased tendency
to escape (B). Dashed lines represent 95% confidence limits of the
slope.

suggestive of a fight versus flight trade-off. Such trade-offs have
been documented in detail in mammals (Pasi and Carrier 2003;
Kemp et al. 2005; Carrier 2007). In mammals such as dogs,
for example, it has been demonstrated that the morphology of
the locomotor system observed in individuals that are good
fighters is incompatible with a morphology needed to run fast
(Pasi and Carrier 2003; Kemp et al. 2005). Also, in Tupinambis
merianae lizards, animals that were good biters took more time
to reach their shelter and displayed fewer sprint bouts in a
restricted environment. Given that lizards were all near their
optimal body temperature during our behavioral trials, this
observation is probably not the result of a temperature-depen-
dent shift in behavior (Hertz et al. 1982; Herrel et al. 2007).
Whereas this might suggest that a design for fighting (as char-
acterized by large body size and a big head and jaw muscles)
may detrimentally affect sprinting capacity, the greater time
needed to reach a shelter might also be the consequence of
behavioral reluctance to run rather than the result of an inability
to run. Although this needs to be tested directly by measuring
both sprint speed and bite-force capacity in the same individ-
uals, it seems probable that the extremely large heads of in-

dividuals with large bite forces may actually negatively affect
their ability to run fast.

Previous authors have suggested an important effect of body
size in mediating the outcome of aggressive encounters between
conspecifics (Chani 1995; Goldsmith et al. 1996; Nowbahari et
al. 1999; Whiting et al. 2006; Hoyer et al. 2008). Indeed, because
larger animals are bigger and have greater absolute levels of
physical performance, they are presumably more likely to win
an aggressive encounter. In our sample of T. merianae, bite
force and aggressive behavior were also positively correlated
with the overall size of the lizard (Table 2). Interestingly, the
slope of the regression of bite force on snout-vent length was
greater than the expected value of 2 (males: 2.75; females: 2.63;
all else being equal, force should scale to linear dimensions with
a slope of 2 because force is proportional to the cross-sectional
area of the muscles), indicating that larger individuals are dis-
proportionately better at biting. Thus, our data suggest that
animals with large body sizes may be more aggressive because
(1) they probably have a decreased risk of physical injury be-
cause of their large body sizes, and (2) they have dispropor-
tionately high bite forces, making them more likely to gain
from engaging in aggressive encounters.

Although we do not know whether aggression in the indi-
viduals in our study was also mediated by higher circulating
hormone levels, studies are currently underway to examine the
proximate mechanisms underlying the variation in aggression
and bite force in a subset of individuals. In summary, we suggest
that, because bite force increased dramatically with body size,
large body size and high bite force may reduce the threshold
for an individual to engage in an aggressive encounter, allowing
it to potentially gain or maintain resources and fight off pred-
ators while minimizing the risk of injury.
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